The Sirius Project is an initiative of the Brazilian Synchrotron Light Laboratory - LNLS (CNPEM - MCTI), for the design, construction and operation of a new synchrotron radiation source 3rd generation, with high brightness and energy of the electrons of 3.0 GeV. Among many other components, will be built 80 ceramic cameras embedded in specials magnets, whose function is to act to correct the orbit of the electron beam in the storage ring. The ceramic chamber is crucial for this application because this material is transparent to the magnetic field generated in the electro magnet and thus acts directly on the electron beam. The difficulty of these constructive components lies in the fact that, the ceramic components must be attached to metal components will join vacuum chambers that make up the ring, and then must present excellent mechanical and vacuum tight. The process of chemical bonding between the ceramic and metal components is performed by brazing in high vacuum. After brazing, is deposited a film of copper with 7 micrometers thickness. The objective of this paper is to describe the process of film deposition and brazing of copper and the excellent results obtained in the production, mechanical characterization, microstructural and tightness. The results obtained with the process indicate an homogeneous film with high adhesion and electrical resistance near the estimated values. Tests are being carried out by XPS and SEM techniques for chemical and structural characterization.