SÍNTESE DAS CERÂMICAS PIROCLÓRICAS BZN-α E BZN-β PELA RELAÇÃO EM ESTADO SÓLIDO

Farias, F. C. (1); Alves, A. G. (1); ALVES, Y. M. (1); Pereira, C. A. (2); Saraiva, I. R. (2); Conde, W. S. (3); Pereira, F. M. M. (1); Barroso, M. B. (1); Sombra, A. B. (3); (1) UFCA; (2) FANOR; (3) LOCEM; werleyfarias@gmail.com

RESUMO

As cerâmicas a base de Bi_2O_3 –ZnO– Nb_2O_5 (BZN) apresentam duas fases principais, $Bi_{1,5}ZnNb_{1,5}O_7$ (α) e $Bi_2Zn_{2/3}Nb_{4/3}O_7$ (β) com estruturas cristalinas cúbicas e monoclínica, respectivamente. Este trabalho objetivou sintetizar as fases BZN- α e BZN- β quimicamente homogêneas e observar as transformações de fases ocorridas no sistema, empregando-se o método cerâmico nas suas obtenções. Foram caracterizadas por microscopia eletrônica de varredura (MEV), Difração de Raios-X (DRX), além do método Rietveld no refinamento estrutural e Espectroscopia no Infravermelho. A fase BZN- α apresentou-se pura nas temperaturas de sinterização utilizadas, embora a fase BZN- β tenha apresentado fases remanescentes do seu processo de formação, como BiNbO₄ e Bi₅Nb₃O₁₅. Para o BZN- α foram observadas absorções em 469 e 328 cm⁻¹, atribuídas ao estiramento metal-oxigênio, o BZN- β apresentou bandas de absorção nos comprimentos de ondas de 601, 515, 447 e 328 cm⁻¹, sendo também atribuídos a ligação metal-oxigênio.

Palavras-Chave: BZN, cerâmicas piroclóricas, dielétrico, TCC.

INTRODUÇÃO

Os pirocloros apresentam estruturas constituídas por famílias de oxigênios octaedros, podendo ser escritos pela fórmula geral A₂B₂O₆O'. Os cátions que

ocupam A possuem número de coordenação oito e estão localizados dentro escalenoédricas (cubos distorcidos) que contém dois ânions O' igualmente espaçados, sendo um ligeiramente mais próximo dos cátions centrais. Os cátions B são menores e possuem número de coordenação seis, estando localizados dentro de antiprismas trigonais (octaedro distorcido) com todos os seis ânions a mesma distância dos cátions centrais^[1].

Apesar da enorme flexibilidade composicional, o sistema pirocloro, com estrutura cúbica e oito átomos por célula unitária (Z = 8) e o grupo espacial *Fd3m* apresenta-se como fase predominante. Contudo, há compostos com simetria não cúbica, ocorrendo frequentemente para cátions com pares de elétrons desemparelhados, como Bi³⁺ e Pb^{2+ [2]}.

O sistema Nb₂O₅-ZnO-Bi₂O₃(BZN) têm encontrado recentemente grande interesse em aplicações pela sua baixa temperatura de queima e propriedades dielétricas em alta frequência, decorrente disso, o BZN vem sendo apontado como grande candidato em capacitores que podem ser processados com materiais de baixo ponto de fusão, como a prata^[3]. Podendo ser descrito pela fórmula geral (Bi_{3x}Zn_{2-3x})(Zn_xNb_{2-x})O₇, sendo constituído por duas principais fases, Bi_{1.5}ZnNb_{1.5}O₇ (BZN- α com estrutura cúbica, x= 0,5) e Bi₂Zn_{2/3}Nb_{4/3}O₇ (BZN- β com estrutura monoclínica, x = 2/3). Exibindo propriedades dielétricas bastantes diferentes, como constante dielétrica (ϵ), ±145 e 80, coeficiente de capacitância com temperatura (TCC), -400 e 200 ppm/°C, e tan δ <0.0002 (100 kHz), respectivamente^[4].

O presente trabalho teve como objetivo sintetizar as cerâmicas piroclóricas BZN- α e BZN- β , empregando-se o método cerâmico, para a obtenção de nanopós cerâmicos. Além de estudar a morfologia dos grãos por microscopia eletrônica de varredura (MEV) e identificar e quantificar as fases BZN- α e BZN- β por difração de raios X, utilizando o método Rietveld no refinamento das estruturas, além da análise dos módulos de vibração das ligações por Espectroscopia de Infravermelho (IV). MATERIAIS E MÉTODOS

<u>Síntese</u>

As cerâmicas piroclóricas BZN- α e BZN- β , foram sintetizadas empregando-se o método cerâmico, para obtenção de nanopós dessas cerâmicas. Os óxidos de ZnO, Nb₂O₅ e Bi₂O₃ da marca Aldrich de alta pureza, foram pesados estequiometricamente, moídos em moinho planetário de alta energia por 1 hora. Em

seguida, os pós obtidos foram calcinados em temperatura de 700°C/2h, posteriormente foram prensados, por prensagem uniaxial, em formas de disco e sinterizados nas temperaturas de 900, 950 e 1000°C/2h.

Caracterização

Os pós das amostras calcinadas e sinterizadas, foram caracterizados por difração de raios-X (DRX) (Rikagu, DMAX), Cu Kα, 40 kV - 25 mA, 20-80°, para identificação das fases presente no material, e quantificadas pelo método Rietveld, através do *software* DWSB Tolls 2.4. A morfologia e tamanho dos grãos foram realizados por microscopia eletrônica de varredura(MEV), VEJA II XMU (TECSCAN, USA). Metalizadora: MED 020 BAL-TEC, operando a 5 mA e 50 kV.

A Espectrômetro de Infravermelho com Transformada de Fourier foram realizadas em um modelo VERTEX 70 v, utilizando o acessório de refletância total atenuada (ATR). Os espectros foram obtidos no modo de transmissão em pastilhas de KBr, na faixa de 130 a 4000 cm⁻¹ com resolução de 4 cm⁻¹.

RESULTADOS E DISCUSSÃO

A Figura 1 apresenta os padrões de difração obtidos para amostras calcinadas a 700 °C e sinterizadas a 900, 950 e 1000 °C, respectivamente. Observou-se que na temperatura de 700 °C (Figura 1-a), houve a formação da fase BZN- α (ICSD PDF 00-052-1770), e também a formação de uma pequena quantidade das fases BiNbO₄ (ICSD PDF 00-016-0295) e ZnO (ICSD PDF 00-003-0752). Estas fases remanescentes são fases precursoras de BZN- α , segunda a reações indicada por Nino *et al.*^[5]

$BiNbO_4$ + $ZnO \rightarrow BZN-\alpha$ (A)

Que se completa em torno de 800°C para um tempo médio de 300 minutos^[5]. Esta reação é difusional, e consequentemente, para temperaturas maiores, tem-se tempo menores de reação, decorrente disso, nas temperaturas de 900, 950 e 1000°C é possível obter a fase BZN-α pura, mesmo para as duas horas de sinterização adotadas^[6].

Figura 1: Análise de DRX para o BZN-α calcinado 700 °C e sinterizado nas temperaturas de 900, 950 e 1000°C. (a) - BZN-α (!), BiNbO₄ (°) e ZnO (*) e (b) - BZN-β(!), BiNbO₄(°) e Bi₅Nb₃O₁₅(*).

De acordo com os parâmetros de rede obtidos no refinamento de Rietveld a fase Bi_{1.5}ZnNb_{1.5}O₇, apresentou grupo espacial *Fd3m*, α = β = γ 90°, com a = b = c = 10.557 Å, densidade 7,044 g/cm³ e volume da célula unitária 1176,580 Å³. Esses resultados condizem com o padrão PDF 00-052-1770 estabelecido pela ICSD.

Levin *et al.* (2002) realizaram uma detalhada investigação sobre a estrutura do Bi_{1.5}ZnNb_{1.5}O₇, usando a combinação de difração de raios-X e nêutrons, em amostra na forma de pó. Os resultados mostraram pequenas quantidades de ZnO existem além da fase principal do pirocloro cúbico, a partir desses resultados eles determinaram a composição do pirocloro cúbico individual dada por Bi_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}^[7]. Decorrente disso, o pico estabelecido ao ZnO sempre se encontra presente, mesmo altas temperaturas de processamento

Para a Figura 1-b, em todas as temperaturas, os padrões de DRX da fase BZN-β (ICSD PDF 00-052-0141), apresentaram duas fases remanescentes Bi₅Nb₃O₁₅ (ICSD PDF 00-016-0293) e BiNbO₄ (ICSD PDF 01-071-1518), essas fases seguem o seguinte caminho de reação:

Bi₅Nb₃O₁₅ + BiNbO₄ + 2ZnO \rightarrow 3BZN- β (B)

Conforme acontece ao BZN-α, o BZN-β também apresenta sua formação difusinal, aumento sua taxa reação com o aumento da teperatua de reação.

De acordo com os parâmetros de rede obtidos no refinamento de Rietveld, a fase Bi₂Zn_{2/3}Nb_{4/3}O₇, apresentou grupo espacial *C*2/*c*, com α = γ = 90,0° β = 101.256° e a = 13.119 Å, b = 7.671 Å e c = 12.165 Å, densidade 7.719g /cm³, volume da

138

célula unitária de 1.200,687 Å³. Esses resultados condizem com o padrão PDF 00-052- 0141 estabelecido pela ICSD. Os valores dos parâmetros de rede para o BZN-β seguem a seguinte relação: a = $(a_c\sqrt{6})/2$, b = $a_c\sqrt{2}$, c = $(a_c\sqrt{11})/(2\sqrt{2})$, onde a_c representa o comprimento do parâmetro de rede para o BZN- $\alpha^{[8]}$.

Segundo Chen *et al.* (2003) as fases BZN- α e BZN- β apresentam cinéticas de reação diferentes. A formação de BZN- α pode ser decorrente de Bi₅Nb₃O₁₅ ou de BiNbO₄, apresentando crescimento controlado por difusão e taxa constante de nucleação. Contudo para a formação de BZN- β , são necessários a presença simultânea de Bi₅Nb₃O₁₅ e BiNbO₄ e consequentemente os núcleos previstos para a formação de BZN- β já estão pré-determinados antes da formação desta, desta forma, a cinética de reação de BZN- β poder ser pensado como um processo controlada por difusão com taxa de nucleação zero. As duas fases também apresentam diferentes energias de ativação, sendo ela menor para a fase BZN- α , e decorrente de sua estrutura, pois o BZN- β apresenta nos seus sítios A apenas os íons Bi³⁺, onde os pares de elétrons desemparelhados 6s² poderiam distorcer a rede sendo necessário maior energia de ativação para a formação de BZN- β em relação a BZN- α ^[6].

Conforme a análise dos dados contidos na Tabela 1, os valores para R_p e R_{exp} condizem com os valores esperados para o refinamento. O valor de S representa a qualidade do refinamento, sendo dado pela a razão de R_{wp} por R_{exp}, desta forma, quanto mais próximo for esse fator da unidade melhor o refinamento feito, assim como S, a estatística de Durbin-Watson, D_{WD}, que fornece o grau de correlação serial no refinamento, deve possuir seus valores os próximos da unidade^[12], para ambas as amostras os valores mostraram-se satisfatórios.

Tabela 1: Dados estatísticos obtidos no refinamento Rietveld das amostras BZN-α e BZN-β sinterizadas a 1000°C/2h.

	Mass a (%)	Rp (%)	Rwp (%)	R ехр (%)	S	Dwd	Lc (nm)*		
Amostras							Planos cristalográficos (hkl)		
							222	044	226
BZN-α	100	19,49	26,93	15,99	1,69	0,91	84,4128	96,504	101,727
							402	223	316
BZN-β	100	19,5	26,93	15,99	1,68	0,89	220,6892	220,82	226,407

139

A Figura 2 mostra as imagens obtidas no MEV para o BZN- α e BZN- β sinterizados à 1000°C. É possível verificar através da imagem, que as fases se apresentam bem densificada, contudo BZN- α apresenta alguns poros sendo atribuídos à vaporização do bismuto ou a defeitos de processo, como má compactação no momento de prensagem. O BZN- β apresenta grãos equiaxiais, bem densificada, sem a presença de poros, e sem fases precipitadas em seus contornos.

$$\Gamma = A_g^{(R)} + 3A_{2u}^{i.a} + E_g^{(R)} + 3E_u^{i.a} + 2F_{2g}^{i.2} + 7F_{1u}^{IR} + 4F_{2g}^{(R)} + 4F_{2u}^{(i.a)}$$
(C)

Desses 25 modos, os modos A_g , E_g , $4F_{2g}$ são ativos Raman (R), $7F_u$ é ativo no infravermelho (IR), e resto são opticamente inativos (i.a).

A Figura 3 apresenta os espectros de absorções no infravermelho para as amostras BZN- α e BNZ- β . As bandas de absorção de IV dos sólidos inorgânicos são geralmente atribuídas as vibrações dos íons na rede cristalina na faixa de 100-1000 cm⁻¹. Existem sete módulos de vibração e dobramento das ligações metal-oxigênio nas estrutas piroclóricas do tipo A₂B₂O₇^[2]. Como pode ser visto na Figura 3.a, as bandas de absorções observadas entre 850 e

451 cm⁻¹ são atribuídas as ligação A-O'. A banda próxima a 260 cm⁻¹ é atribuido ao dobramento da ligação O-B-O. E as bandas observadas em 469 e 328 cm⁻¹ são atribuídas ao estiramento da ligação metal-oxigênio. A cerâmica BZN-β apresenta bandas de absorção muito semelhantes à BZN-α (Figura 3.b). As bandas em 601, 515, 447 e 328 cm⁻¹ são atribuídas ao estiramento da ligação metal-oxigênio na amostra BZN-β. E a banda observada próximo a 813 cm⁻¹ é atribuída ao composto Bi₅Nb₃O₁₅ (750 °C), que em temperaturas mais elevadas é totalmente consumido, como pode ser verificado nos espectros correspondentes as temperaturas (90, 950 e 1000 °C).

Segundo Du *et al.* (2002)^[10] a banda de absorção em torno de 600 cm⁻¹ está atribuida à ligação B-O nos octaedros BO₆ e a banda em 500 cm⁻¹ é atribuída às ligações dos íons A com os oxigênios O' (A-O'). Não observou-se grandes influências com as temperaturas estudadas em torno de 600 cm⁻¹, mas para a banda de 500 cm⁻¹, a mesma tornou-se mais acentuada com o aumento da temperatura(Figura 3).

McCauley *et al.* (1973)^[11] constataram em seus experimentos, um conjunto de espectros de absorção para estruturas piroclóricas, mostrando um número muito baixo de absorções nas bandas entre a faixa de 800-1100 cm⁻¹, decorrente do grau de complexibilidade da estrutura piroclórica. Withers *et al.* (2004) ^[12] verificou uma diferença em mais de 20% no tamanho das ligações entre A-O' e A₂O'.

Figura 3: Espectros na região do infravermelho para o BZN- α (a) e BZB- β (b).

REFERÊNCIAS

- Hong W.; Xiaoli W.; Xi Y. Phase Transformation and Phase Distribution of Pyrochlore Structure in Bi₂O₃-ZnO-Nb₂O₅ system. Electronic Materials Research Laboratory. IEEE. 0-7803-3355,1996.
- [2] Subramanian M. A.; Aravamudan G.; Subba Rao G. V. OXIDE PYROCHLORES - A REVIEW. *Prog. Solid St. Chem.* Vol. 15, pp. 55-143. 1983.
- [3] Hu Y.; Huang C.L. Structural characterization of Bi–Zn–Nb–O cubic pyrochlores. Cerami. Int, v.30 p.2241–2246, 2004.
- [4] Levin I.; Amos T. G.; Nino J. C.; Vanderah T. A.; Randall C. A.; Lanaganw M. T. Structural Study of an Unusual Cubic Pyrochlore Bi_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}. Jour. Sol. Sta. Chemi. V.168 p. 69–75, 2002.
- [5] Nino J. C.; Lanagan M. T.; Randall C A. Phase formation and reactions in the Bi₂O₃–ZnO–Nb₂O₅–Ag pyrochlore system. J. Mater. Res. v. 16 p. 1460-1464,2001.
- [6] Chen S.; Lee S. Y.; Lin Y. J. Phase transformation, reaction kinetics and microwave characteristics of Bi₂O₃–ZnO–Nb₂O₅ ceramics. Jour. Euro. Ceram. Soc. v.23 p.873–881, 2003.
- [7] Levin I et al. Structural study of an unusual cubic pyrochlore Bi_{1.5}Zn_{0.92}Nb_{1.5}O_{6.92}, Journal of Solid State Chemistry. v.168 p.69–75, 2002.
- [8] 10. Levina I.; Amos T. G.; Nino J. C.; Vanderah T. A.; Reaney I. M.;Randall C. A.; M. T. Lanagan. Crystal structure of the compound Bi2Zn2/3Nb4/3O7, J. Mater. Res., v.17 p.1406-1411,2002.
- [9] Oliveira C. F. Caracterização Estrutural e Microestrutural de Cerâmicas PZT Dopadas com Nióbio, Dissertação (Mestrado em Química) - Instituto de Química de Araraquara – UNESP.
- [10] Du, H., Yao X. & Zhang, L., Structure IR spectra and dielectric properties of Bi₂O₃–ZnO–SnO₂– Nb₂O₅ quarternary pyrochlore. Ceram. Int., 2002, 28, 231-348.
- [11] R. A. McCauley, J. Opt. Soc. Am. 63, 721 (1973).
- [12] R. L. Withers, T. R. Welberry, A.-K. Larsson, Y. Liu, L. Noren, H. Rundlof, and F. J. Brink, J. Solid State Chem. 177, 231 (2004).
- [13] S. Brown, H.C. Gupta, J.A. Alonso, M.J. Martinez-Lope: J. Raman Spectrosc. 34, 240 (2003)

ABSTRACT

The ceramics the base of Bi_2O_3 -ZnO-Nb₂O₅ (BZN) have two main phases, $Bi_{1,5}ZnNb_{1,5}O_7$ (α) and $Bi_2Zn_{2/3}Nb_{4/3}O_7$ (β) with cubic and monoclinic crystal structures, respectively. This study was aimed to summarize the BZN- α phase and BZN- β chemically homogeneous and observe the phase transformations that occur in the system, using the ceramic method. They were characterized by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and the Rietveld method in structural refinement and Infrared Spectroscopy. The BZN- α phase is presented in pure sintering temperatures used, although BZN- β phase has brought the remaining stages of its formation process, as $Bi_5Nb_3O_{15}$ and BiNbO4. For BZN- α were observed absorptions at 469 and 328 cm^{-1} , attributed to the metal-oxygen stretch the BZN- β showed absorption bands at wavelengths of 601, 515, 447 and 328 cm^{-1} , also being assigned metal-oxygen bond.

Keywords: BZN, ceramics hypocaloric, dielectric, TCC.