EVALUATION OF THE MICROSTRUCTURE AND MICROHARDNESS OF THE MAGNESIUM-NIOBIUM OXIDE METAL MATRIX COMPOSITES PRODUCED BY POWDER METALLURGY

H. P. Duarte¹*, V. E. P. Silva¹, M. E. D. Serenario¹, M. B. S. Rodarte¹, C. C. S. Pereira¹, R. M. Balestra¹, A. L. R. Sabariz¹

¹Department of Mechanical Engineering, Federal University of São João Del Rei, São João Del Rei, Minas Gerais, Brazil

*Corresponding author: Praça Frei Orlando n°170, Centro, São João Del Rei, Minas Gerais, Brazil. CEP 36307-352. E-mail: pinhoduarte@uwalumni.com

ABSTRACT:

This paper aims to study magnesium composites with reinforcement of niobium. For this, Mg-Nb2O5 composites were produced by powder metallurgy, with variations of 1%, 2% and 4% by weight of reinforcement. The temperature used was 620°C for a time of 6h. These materials were metallographically analyzed by means of optical microscopy, SEM and EDS, and mechanically tested through the Vickers microhardness. Archimedes density analysis was applied to address the influence of the addition of reinforcements in the magnesium matrix quantitatively. The statistical method used consists in the analysis of variations and Tukey's test. The samples with 4% by weight of reinforcement obtained the best results of densification and higher microhardness values, as well as a homogeneous distribution of reinforcement and few defects. Conversely, experimental results suggest that recrystallization and grain growth were detrimental to the mechanical strength of the composites, therefore, shorter sintering times are preferred.

Keywords: Magnesium matrix composites, reinforcement of niobium oxide, metallography, microhardness.
1. INTRODUCTION

Magnesium and its alloys have drawn considerable attention on the last decades due to larger demands for lightweight materials, especially for the automotive and aircraft industry. The main reason for this interest comes from the fact that magnesium has a density of 1.74g/cm³, that is, 35% lighter than aluminum (2.71g/cm³) and almost 4 times lighter than steel (7.86g/cm³) [1]. Moreover, it can be noticed from the Ashby diagrams that these alloys have equivalent tensile and compressive specific resistance to aluminum and steel. Furthermore, magnesium has also the highest specific resistance in the shape of beams and plates among all the conventional metallic alloys [2]. Aside from these advantages, there are still some technological challenges that need to be overcame, such as low deformability, low resistance to creep and corrosion [1]. As a result of its hexagonal closest packed (hcp) crystalline structure, the main mechanisms of deformation at low temperature are the slippage of the basal planes {0001} and twinning, making the production of plates and extruded products a problem. In this context, several attempts are being made to develop stronger materials and to find adequate production processes. This research describes the process of fabrication and characterization of magnesium matrix composites reinforced with fine dispersions of niobium oxide, produced trough powder metallurgy. Many tries have been made in the past, with special success to the composites made with addition of Al₂O₃ [5][6], SiC [7][8][9], Y₂O₃[10], and Carbon nanotubes [11]. A recent study [3] has shown a significant improvement of strength due to the addition of fine niobium addition in up to 10%wt. Niobium oxide is a ceramic material with excellent stability and corrosion resistance both in acid and basic environments. Nevertheless, the study of its oxide (Nb2O5), as reinforcement for magnesium matrix composites is still unknown (12, 13).

2. EXPERIMENTAL PROCEDURE

2.1. Materials

Magnesium matrix composites were produced using sieved magnesium filings obtained from a pure casted ingot with particle sizes between 125 and 149 microns, 99.7% pure niobium oxide (Nb₂O₅) powder with particle size under 44 microns was used as reinforcement. The morphology of both powders was examined on a Hitachi T3000 Scanning Electron Microscope (SEM) using magnification of 100x, which is
presented on the following figure. One can also notice the difference on the particles sizes of the powders.

Figure 1. SEM image of displaying (a) the morphology of the particles that constitute the matrix, (b) the Nb$_2$O$_5$ powder used as reinforcement.

2.2. Fabrication of Mg/Nb$_2$O$_5$ composites

Since there are apparently no results published on the literature for this specific composite material, additions of 1, 2 and 4 wt.% were specified on a general basis for magnesium matrix composites with ceramic micro particles as reinforcements (5-11). The powders used were mixed on an Across International PQ-N2 planetary ball mill for 1 hour at 580 rpm, with three containers per ladle, one for each sample. Thereupon, these were compacted on a uniaxial hydraulic press using a tool steel cylindrical die with internal diameter of 10mm. The compressive stress to be used was determined based on the relative density curve shown at the figure 2. Since the densification reaches approximately 85% at 250MPa, one can already create an interesting pre-sintering specimen at lower loads. In addition, previous results (14, 15) demonstrate excellent results for compacting pressures between 200 and 300 MPa, however, these were obtained for industrial magnesium powders. The density measurements were performed through the Archimedes method, on a Marte AL500C analytical balance, using absolute ethyl alcohol (99.5% pure), at a refrigerated room maintained at 22°C. The ASTM standard B311-13 was used as guideline for the experimental procedures.
The samples were sintered on an induction-heated furnace with inert atmosphere created purging pure argon at flow rate of 10 L/min. In accordance with the results reported by Hal et al. (15) on a similar study, the finest mechanical properties are obtained for sintering temperatures between 610 and 630°C, hence the temperature adopted was 620°C for a time of 6 hours.

![Figure 2](image)

Figure 2. Relative density curve obtained from green density measurements of magnesium filings compacted from 100 to 800 MPa in intervals of 25 MPa.

2.3. Characterization

The samples had their densities measured before and after the sintering procedure through the Archimedes method, on a Marte AL500C analytical balance, using absolute ethyl alcohol (99.5% pure), at a refrigerated room maintained at 22°C. The standard ASTM B311-13 was used as guideline for the experimental procedures. The data displayed on the figure 2 has also been acquired with this procedure. Subsequently, the samples were cold mounted and prepared for metallographic analysis on SEM, the grinding and polishing process followed the methods described on the standard ASTM E3-11. Thereafter, the samples were etched by swabbing for approximately 120s with a solution containing 1ml of HNO3, 75 ml of ethylene glycol and 25 ml of water, as recommended by Leng, Y. (18). Thereafter these were also with an Olympus BX51 light microscope. The microhardness of the specimens was measured in conformity with the standard ASTM E384-16 using a Mitutoyo MVK 54.
G1 microhardness tester equipped with a pyramidal indenter angled at 136°. The load applied was 200gf for a time of 15s.

2.4. **Statistical treatment of the results**

The only variable of proportion on this study was the amount of reinforcement (1, 2 or 4 wt. %). The experimental level of the investigated factors conceives a planning corresponding to 3 conditions, each one with 3 replications. Two factors were investigated using the tool ANOVA, the density and the Vickers micro hardness, both after sintering.

3. **RESULTS AND DISCUSSION**

3.1. **Production procedures**

The magnesium powder used in the matrix was obtained from a machining process, and presents particles with appearance of arc chips, with negligible thickness and width of approximately 200 µm. The Energy Dispersive Spectroscopy (EDS) scan shown on the following figure, confirms the homogeneous distribution of reinforcements along the matrix and a considerably small oxidation.

![Figure 3. EDS mapping of a sample reinforced with 4 wt. % Nb2O5.](image-url)
In order to determine the optimal compacting pressure, the relative green density curve previously presented at the figure 2 was established. This result revealed an excellent compacting behavior of the powder, which was able to achieve densifications up to 80% under loads as low as 100Mpa. This outcome can be attributed to the arc shape of the fillings that differently from the conventional powder with spheroidal particles, can easily fill the interstitial vacancies and therefore, can be better accommodated within the matrix after pressing.

Considering the necessity of breaking eventual nanometric oxide layers that may be involving the matrix particles and thus, could be significantly detrimental to the diffusion mechanism that drive the sintering process (20, 21), a compacting pressure of 250MPa was adopted. The coming figure exhibits a green body (Mg + 4 wt. % Nb2O5) compacted with 250MPa. One can clearly examine the delineation of the powder formed by the niobium oxide particles (white).

3.2 Microhardness

The sintered specimens presented a severe drop on the microhardness in comparison to the green samples. From the prospect that a high concentration of oxides would decrease the diffusion rate and slow down the sintering process, longer sintering times should be used to achieve better sintering. Likewise, it was expected that the fine niobium oxide particles could block the grains growth during the sintering process, preventing any loss on the mechanical resistance due to microstructural coarsening. Many authors investigated the process of recrystallization and grain growth on pure magnesium and its alloys. Fromageau describes a slight grain growth starting at 400K (22), similarly, Miao investigated the grain growth on a AZ31 alloy and noticed an extremely quick advance of this process after 723K (23). Therefrom, it can be concluded that the hardness losses are related to the considerable grain growth of the matrix, in accordance to the Hall Petch effect.
Table 1. Average Nb$_2$O$_5$ Vickers microhardness results for the samples with pure magnesium, 1 %, 2% and 4% in weight of reinforcement, and for a die casted pure magnesium ingot.

<table>
<thead>
<tr>
<th>Material</th>
<th>Microhardness (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg – Die casted</td>
<td>43.0</td>
</tr>
<tr>
<td>Mg - Green</td>
<td>41.7</td>
</tr>
<tr>
<td>Mg + 1% Nb$_2$O$_5$ - Green</td>
<td>43.6</td>
</tr>
<tr>
<td>Mg + 2% Nb$_2$O$_5$ - Green</td>
<td>44.2</td>
</tr>
<tr>
<td>Mg + 4% Nb$_2$O$_5$ - Green</td>
<td>45.1</td>
</tr>
<tr>
<td>Mg - Sintered</td>
<td>29.2</td>
</tr>
<tr>
<td>Mg + 1% Nb$_2$O$_5$</td>
<td>29.8</td>
</tr>
<tr>
<td>Mg + 2% Nb$_2$O$_5$</td>
<td>32.7</td>
</tr>
<tr>
<td>Mg + 4% Nb$_2$O$_5$</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Figure 4. SEM image presenting the microstructure of the composites reinforced with 4 wt. % Nb$_2$O$_5$. (a) Green composite with magnification of 100x. (b) Green composite with magnification of 500x. (c) Sintered composite with magnification of 100x. (d) Sintered composite with magnification of 500x.
4. CONCLUSIONS

Sintering can be efficiently used to produce final products of magnesium; however, as the process parameters have a direct influence on the quality of the final product, these should be carefully studied. The magnesium filings attained good mixing and excellent compatibility, what coupled with the possibility of being produced from industrial wastes, at reduced cost, makes this a preeminent raw material for powder metallurgy. In spite of the losses of mechanical strength caused by the grain growth, it is noticeable that the presence of Nb2O5 increases the strength of the composite, which archived a difference up to 8% in microhardness between pure magnesium and the specimens with 4 wt. % of reinforcement.

5. ACKNOWLEDGEMENTS

The authors acknowledge the funding and support from The Minas Gerais State Research Foundation (FAPEMIG), the materials donation from the Advanced Metallurgical Group (AMG), and the contributions from the Centre for Innovation and Technology on Composites (CITEC) of the Federal University of São João Del Rei (UFSJ).

6. REFERENCES

(4) T. MAYAMA, K. AIZAWA, Y. TADANO, M. KURODA, Influence of twinning deformation and lattice rotation on strength differential effect in polycrystalline pure magnesium with rolling texture., Computational Materials Science, 47, pp.448-455, 2009
(5) W.L.E. WONG, S. KARTHIK, M. GUPTA, Development of high performance Mg–Al₂O₃ composites containing Al₂O₃ in submicron length scale using microwave assisted rapid sintering, Materials Science and Technology, 21, pp.1063-1070, 2005

