ANÁLISE NUMÉRICA-EXPERIMENTAL DA INFLUÊNCIA DA ESPESSURA DA CHAPA NO CAMPO DE TEMPERATURA EM SOLDAGEM TIG DO AISI 1020

<u>R. L. F. Melo¹</u>, J. D. Rocha Junior², S.S. Oliveira², E.W.F. Figueredo², R.O.C. Lima² ^{1,2}Laboratorio de Soldagem, Universidade Federal Rural do Semi-Árido – UFERSA, R. Francisco Mota, 572 – Costa e Silva, CEP: 59600-971, Mossoró – RN, Brasil ¹rafaellfm@outlook.com

RESUMO

Foi realizada uma modelagem térmica da soldagem GTAW autógena em 3 chapas de diferentes espessuras do AISI 1020. Para a modelagem foi utilizado o ANSYS[®] com as propriedades do material, determinadas em função da temperatura (condutividade térmica, calor específico e densidade). Foram consideradas as perdas de calor por condução, convecção natural e radiação. Para a determinação da propagação do calor, foram utilizados 6 pontos de análise, sendo 3 situados a 10, 20 e 30 mm do centro da passagem do cordão de solda e outros 3 situados no lado oposto ao da solda em uma distribuição simétrica em relação aos 3 primeiros pontos. As medições de temperatura experimental foram realizadas de forma similar ao modelo numérico, a fim de obter uma coerência dos dados.

Palavras-chave: Soldagem TIG, Campo de temperatura, Simulação numérica, Diferentes espessuras de chapa.

INTRODUÇÃO

Nos últimos anos foi crescente o interesse pelo campo da simulação numérica, tendo em vista sua capacidade de simular diversos fenômenos da natureza⁽⁵⁾. São exemplos de aplicação da simulação numérica, os processos de soldagem. O conhecimento prévio do que um processo de soldagem irá gerar em uma peça é de grande ajuda em um projeto de engenharia. A partir da simulação, o campo de temperatura, tensões residuais e deformações do processo podem ser determinados⁽¹⁾.

Em um processo de soldagem, a peça sofre transformações indesejáveis na microestrutura juntamente com deformações plásticas e elásticas, fazendo com que a peça em questão sofra de um acúmulo de tensões residuais. Essas tensões residuais por sua vez, podem gerar grandes prejuízos operacionais ^(7,10).

Para a obtenção do o campo de deformações em uma peça soldada, o primeiro passo é o conhecimento do campo de temperatura, que por sua vez pode ser obtido através de uma simulação numérica do campo de soldagem.

Para a realização de uma análise térmica numérica de um processo de soldagem, necessita-se primeiramente da definição da fonte de calor que será utilizada no processo. Atualmente as fontes de calor mais empregadas na literatura são com modelos de condução e com modelo de convecção térmica⁽⁴⁾. O modelo de condução térmica é dado pela equação (A).

$$\rho(T)c(T)\frac{\partial T}{\partial t} = Q + \frac{\partial}{\partial x} \left(K_X(T)\frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y(T)\frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z(T)\frac{\partial T}{\partial z} \right)$$
(A)

onde, ρ (kg/m³) é a densidade, c (J/kg. K) é o calor específico, Q (W) é a entrada de calor, K_x, K_y, K_z (W/m.K) são os coeficiente de condutividade térmica nas três direções, T (K) é a temperatura e t (s) é o tempo.

O segundo passo para a realização da análise térmica é a escolha da geometria da fonte de calor. São dois os modelos mais utilizados na atualidade, o modelo Gaussiano e dupla elipsoidal de Goldak⁽⁶⁾. A dupla elipsoidal possui uma vantagem em relação ao modelo Gaussiano, pois esta possui um modelo Gaussiano, contudo o seu sistema de coordenadas move-se juntamente com a fonte térmica^(2,3). A figura 1, mostra representação geométrica da dupla elipsoidal.

Figura 1: Dupla elipsoidal de Goldak (2005).

METODOLOGIA

O trabalho comparou os resultados obtidos em um modelo numérico, criado no software ANSYS[®] trabalhando juntamente com uma extensão de movimento do fluxo de um processo de soldagem GTAW autógeno, de três chapas de diferentes espessuras, a fim de verificar o gradiente de temperatura gerado por chapas de espessuras diferentes, além disso foram comparados com resultados obtidos do mesmo processo de forma experimental.

A análise foi feita em 3 chapas de aço carbono AISI 1020 com dimensões 200x150 mm e as espessuras de: 12,7 mm (1/2"), 6,35 mm (1/4") e 2 mm. As chapas no modelo numérico foram desenhadas no próprio ANSYS[®] e no modelo experimental foram cortadas em um processo a plasma.

Para uma efetiva comparação, foi necessário utilizar iguais parâmetros de soldagem para todas as chapas, bem como para o processo numérico e experimental, além das mesmas condições de contorno para obtenção das temperaturas. Os parâmetros utilizados são mostrados na tabela 1.

Parâmetros	Valores	
Tensão do arco	10 V	
Corrente	150 A	
Velocidade de soldagem	10 mm/s	
Energia de soldagem	150 J/mm	
Rendimento	80%	
Insumo de calor	120 J/mm	

Tabela 1: Parâmetros de soldagem para o processo numérico e experimental.

Para a obtenção dos dados numéricos necessitou-se criar o material AISI 1020 no software, para que dessa forma, este possuísse um comportamento transiente em relação a temperatura e suas propriedades físicas. A tabela 2, mostra as propriedades inseridas para a criação do material.

 Tabela 2: Propriedades termofísicas numéricas do AISI 1020.

Temperatura	Calor específico	Condutividade térmica	Densidade
(°C)	(J/Kg °C)	(W/m°C)	(Kg/m^3)
0	460	53	7840

22º CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais 06 a 10 de Novembro de 2016, Natal, RN, Brasil

100	495	51	7815
200	525	47,5	7800
300	570	44	7785
400	615	41	7740
500	675	37	7690
600	750	34	7650
700	900	31	7612
800	830	27,5	7640
850	580	27,5	7612
900	590	27,5	7580
1000	600	27,5	7520

Como foram criadas 3 chapas de espessuras diferentes para análise no processo numérico, foi necessária a geração de 3 malhas do tipo triângulo, possuindo um refino de malha exatamente onde o cordão de solda passou, para que dessa forma não acarrete em uma grande sobrecarga computacional. A figura 2 mostra a malha para cada chapa utilizada.

Figura 2: a) Representa a chapa para espessura de 12,7 mm, esta obteve uma malha de 15829 elementos e 28004 nós; b) Representa a chapa para espessura de 6,35 mm, esta obteve uma malha de 14004 elementos e 25311 nós; c) Representa a chapa para espessura de 2 mm, esta obteve uma malha de 8962 elementos e 18683 nós.

No processo experimental, outras condições de contorno são consideradas, como por exemplo, a utilização do gás de soldagem, que no caso foi o argônio puro com vazão de 15 l/min, a forma de fixação da peça e dos termopares, que por sua vez foram adaptados de acordo com a metodologia adotada por Melo⁽⁸⁾ conforme figura 3.

Figura 3: Fixação das peças para análise experimental.

Para a obtenção do campo de temperatura, os termopares foram dispostos no modelo numérico, em 3 pontos na parte superior e inferior da peça, como mostra as figuras 4 e 5. Nesta última é possível visualizar a fixação dos termopares nas 3 diferentes espessuras, em a) está a chapa mais espessa, em b) a intermediária e em c) a mais fina.

a) 5) ()

Figura 5: Disposição dos termopares em cada espessura de chapa utilizada.

No experimental, foram realizados três ensaios em cada espessura de chapa, a fim de obter uma média dos resultados.

RESULTADOS E DISCUSSÕES

Deslocamento da fonte de calor computacional

A figura 6 apresenta o deslocamento da fonte de calor, com utilização da geometria dupla elipsoidal de Goldak⁽⁶⁾. Nesta estão plotados os resultados da simulação nas três espessuras utilizadas em três momentos da soldagem. Cada linha representa uma espessura e cada coluna um momento da soldagem. É possível perceber que há uma diferença na temperatura logo nos primeiros momentos da soldagem, em 1,5 segundos a chapa mais fina já possui um aumento de temperatura mais elevado se comparada com as demais.

O tempo de soldagem necessário para realizar o cordão em cada chapa foi de 15 segundos. Durante esse período as temperaturas máximas atingidas por cada chapa foram: 2427,5 °C para a chapa mais espessa; 2512,7 °C para a de espessura intermediária; 2845,9 °C para a mais fina. Esses resultados mostram-se coerentes, já que em um processo de soldagem, a distribuição do fluxo de calor pode ser resumida em duas etapas: fornecimento de calor à peça e distribuição deste calor por ela. A distribuição de calor pela peça nesta situação só dependeu de uma variável, a espessura da peça, já que todos os outros parâmetros foram estabelecidos igualmente. Desta forma, a chapa de maior espessura teve o calor dissipado mais rapidamente^(9,11).

Figura 6: Deslocamento computacional da fonte de calor.

Comparação do perfil de temperatura computacional com experimental

Na figura 7 é possível observar em a) a temperatura em função do tempo para a simulação computacional da parte superior da chapa, em b) a parte inferior. Para cada gráfico foram plotadas quatro curvas, três referentes aos termopares e uma que representa a temperatura no cordão de solda. Nos gráficos c) e b) estão representados os dados referentes ao procedimento experimental, é perceptível um pequeno *delay* em relação ao numérico que pode ser justificado pelo atraso de resposta dos instrumentos.

Ainda na figura 7 é evidente o quão rápido é o seu aquecimento, os valores obtidos pelos dois métodos reforçam esse fato. A temperatura na parte superior da chapa é quase igual ao da parte inferior no mesmo instante de tempo.

Figura 7: Campo de temperatura numérico e experimental da chapa de 2 mm.

A figura 8 representa as medições experimentais e as numéricas na chapa de 6,35 mm da mesma forma que foram abordadas na figura 7. Também é possível perceber um *delay* nos dados experimentais em relação aos numéricos, entretanto existe uma correlação entre os métodos. Nessa, a influência da espessura nas temperaturas entre a parte superior e inferior já é perceptível, os gráficos b) e d) apresentam valores ligeiramente menores em relação aos gráficos a) e c).

Bem como as figuras 7 e 8, a 9 representa as temperaturas na chapa de 12,7 mm. O *delay* da experimental continua aparecendo e a influência da espessura da chapa no campo de temperatura se mostra mais evidente.

Também, é importante observar que em todos os casos, as temperaturas atingidas pelo processo de soldagem foram capazes de fundir o metal. Esta observação se mostra importante uma vez que um dos fundamentos para essa técnica de soldagem é a fusão dos elementos envolvidos.

Figura 8: Campo de temperatura numérico e experimental da chapa de 6,35 mm.

Figura 9: Campo de temperatura numérico e experimental da chapa de 12,7 mm.

CONCLUSÃO

A relação entre a espessura das chapas e o campo de temperatura foi confirmada, de modo que chapas mais espessas obtiveram uma maior dissipação de energia. A eficiência da dupla elipsoidal de Goldak para a previsão dos campos de temperatura em um processo de soldagem por costura TIG autógeno via elementos finitos foi provada a partir da semelhança das curvas de temperaturas experimentais com as curvas de temperatura numérica, além disso, foi possível observar o deslocamento da fonte de calor com as condições de contorno utilizadas e esta foi coerente como as apresentadas por outros autores. Com isso pode-se dizer que a partir dos resultados obtidos com o procedimento numérico é possível obter o campo de deformação, via simulação numérica.

REFERÊNCIAS

ARAUJO, D. B.; *Estudo de distorções em soldagem com uso de técnica numérica e de otimização.* 2012. 212p. Tese (Doutorado em Engenharia Mecânica). Universidade Federal de Uberlândia.

AZAR, A. S.; AKSELSEN, O. M.; *Determination of welding heat source parameters from actual bead shape.* Computation Materials Science. Norway. V. 18, n. 7, p. 29 – 36. 2011.

 BARBAN, L. M.; *Análise numérica-computacional das tensões induzidas pela soldagem.* 2014. 90f. Dissertação (Mestrado em Engenharia Mecânica).
 Universidade de São Paulo.

4. BEZERRA, C. A.; "Modelagem térmica do processo de soldagem TIG via elementos finitos" In: XII Congresso Nacional de estudantes de Engenharia Mecânica. 26, 2005. São Paulo. **Anais. Uberlândia: UFU, 2014.**

5. CAGANI, A. P. M; Análise térmica do processo de soldagem TIG de amostras metálicas. 2010. 117p. Dissertação (Mestrado em Engenharia Mecânica).
Universidade Federal de Uberlândia.

6. GOLDAK, A. J.; *Computational welding mechanics.* 1ed. Canada: Springer, 2005. 325p.

7. KOU. S.; *Welding metallurgy.* 2ed. Nova Jersey: Wiley-interscience, 2003. 461p.

 MELO, R. L. F; obtenção numérica e experimental do campo de temperatura na soldagem TIG do aço AISI 304. 2016. 85p. Projeto de conclusão de curso (Graduação em Engenharia Mecânica). Universidade Federal Rural do Semi-Árido.
 MODENESI, P.J.; MARQUES, P.V; BRACARENSE, A. 1. Soldagem: Fundamentos e tecnologia. 3ed. Belo Horizonte: UFMG, 2013. 362p.
 OUTEIRO, J. C.; UMBRELLO, D.; SAOUBI, R. M. Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. International Journal of Machine tools and Manufacture, p.1786-1794, 2006.
 WAINER, E.; BRANDI, S. D.; Soldagem: Processos e metalurgia. 4ed. São Paulo: Blucher LTDA, 2004. 506p.

NUMERICAL-EXPERIMENTAL ANALYSIS TEMPERATURE FIELD IN TIG WELDING OF AISI 304

ABSTRACT

Was carried out a thermal modeling autogenous welding GTAW in 3 plates of different thicknesses AISI 1020. For modeling was used ANSYS® with the properties of the material determined as a function of temperature (thermal conductivity, specific heat and density). heat loss by conduction, convection and radiation were considered. For the determination of heat propagation, were used 6 points of analysis, 3 set 10, 20 and 30 mm from the center of the passage of the weld bead and others three located on the opposite side of the weld in a symmetrical distribution with respect to first 3 points. The experimental temperature measurements were carried out similarly to numerical model to obtain consistency of results.

Key-Words: TIG welding, temperature field, numerical simulation, different sheet thicknesses.