INVESTIGAÇÃO EXPERIMENTAL DO DIAGRAMA DE FASES DO SISTEMA BINÁRIO Ni-Sn (NÍQUEL-ESTANHO)

C. A. Freire¹, L. T. F. Eleno¹

¹Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de São Paulo (DEMAR-EEL-USP)

e-mail: candradefreire@uol.com.br

RESUMO

No presente trabalho foram preparadas amostras de diferentes composições no sistema Ni-Sn, dando-se preferência para regiões bifásicas, obtidas através de fusão a arco com eletrodo de tungstênio não consumível em atmosfera de argônio. A seguir, as ligas no estado bruto de fusão foram caracterizadas por microscopia eletrônica de varredura (MEV) para análise microestrutural, acoplado a microanálise de energia dispersiva (EDS) para medidas composicionais das fases presentes. A técnica de difratometria de raios X (DRX) foi utilizada para a identificação cristalográfica das fases presentes nas amostras.

Palavras-chave: Ni-Sn, Ligas isentas de chumbo, Diagramas de fases. Caracterização microestrutural

1 INTRODUÇÃO

A indústria de equipamentos eletrônicos se utiliza da soldagem como o principal método de junção de componentes. O processo de soldagem utiliza um metal de adição que é aquecido a fim de ser fundido, molhando o metal base e formando um contato metal de adição/metal base. A junta é então resfriada, possibilitando assim a união dos componentes e a formação do cordão de solda. A utilização de chumbo na soldagem desta classe de materiais é algo consagrado devido a seu baixo ponto de fusão e baixa tendência à formação de intermetálicos, dentre outras propriedades[1,2]. Entretanto, com a crescente preocupação com os efeitos nocivos do chumbo na saúde humana, surgiu à necessidade da substituição desse elemento em suas diversas aplicações[2]. Assim, surgiram estudos referentes a sistemas metálicos que possam compor ligas a serem utilizadas para a mesma finalidade de soldagem e com propriedades adequadas, porém sem a presença desse metal em sua composição, as chamadas ligas isentas de chumbo (*lead-freesolders*)[3,4].

Muitos dos protótipos mais promissores contêm estanho em sua composição e, ao interagirem com o substrato, que por muitas vezes é constituído por ligas a base de níquel, geram um sistema multicomponente contendo uma microestrutura particular na zona afetada pelo calor (ZAC), caracterizada pela presença de fases intermetálicas. Desse modo, é importante caracterizar as possíveis microestruturas oriundas do sistema binário Ni-Sn (níquel-estanho) para se prever o comportamento da utilização das ligas livres de chumbo[5,6].

O presente trabalho tem por objetivo estudar experimentalmente as microestruturas do sistema binário Ni-Sn usando como base o diagrama de fases apresentado porZemanova et al. (2012)[7].

Figura 1 - Diagrama de fases do sistema Ni-Sn.

Fonte: Zemanovaet al. (2012)[7].

2 MATERIAIS E MÉTODOS

Foram preparadas cinco amostras a partir de Ni e de Sn de alta pureza (99,99%). As respectivas composições nominais, molar e em massa, estão listadas na Tabela 1, juntamente com a massa pesada para cada liga.

Ligas	% molar		%massa		massa (g)				
	Ni	Sn	Ni	Sn	Ni	Sn	Total		
NS10	90.00%	10.00%	81.65%	18.35%	4.0826	0.9175	5.0001		
NS23	77.00%	23.00%	62.34%	37.66%	3.1169	1.8837	5.0006		
NS30	70.00%	30.00%	53.57%	46.43%	2.6784	2.3217	5.0001		
NS40	60.00%	40.00%	42.58%	57.42%	2.1294	2.8707	5.0001		
NS48	52.00%	48.00%	34.88%	65.12%	1.7437	3.2562	4.9999		

Tabela 1 - Composição nominal das ligas e massa pesada em cada caso.

Fonte: os autores

As matérias-primas foram cortadas a fim de se conseguir maior precisão e pesadas em balança analítica. As amostras foram colocadas em cadinho de cobre eletrolítico refrigerado a água e fundidas em forno a arco sob atmosfera de argônio com eletrodo não consumível de tungstênio. Previamente à fusão foi feita a limpeza da atmosfera do forno através do estabelecimento do vácuo e da injeção de argônio (purga). Esse processo foi repetido por três vezes até que se atingiu a pressão de 0,03 mbar. Cada amostra passou por quatro fusões com o arco elétrico, a fim de se obter uma composição final mais homogênea. Previamente a cada etapa de fusão foi realizada a fusão de um *getter* (amostra de Ti puro) para a remoção de todo o oxigênio, vapor d'água e nitrogênio que possam estar presentes na atmosfera do forno. Após a fusão as amostras foram cortadas no equipamento de corte BUEHLER ISOMET 1000 com disco diamantado e fluido refrigerante. Uma das metades foi preparada para caracterização do estado bruto de fusão e a outra parte foi reservada para ser tratada termicamente. No presente trabalho, estamos interessados apenas na caracterização das amostras no estado bruto de fusão.

As amostras foram preparadas e levadas para análise em microscópio eletrônico de varredura. Para a preparação foi necessário o lixamento,no qual foram usadas lixas com granulometria de #800, #1000, #1200 e #2400 em rotação de 300 rpm, para se ter a garantia de que toda a camada deformada pelo corte e possivelmente oxidada fossem removidas. A cada troca de lixa a amostra foi virada em um ângulo de 90° para facilitar a visualização no microscópio óptico. Vale

5892

informar que as amostras não sofreram abaulamento. Com o final do lixamento a amostra está preparada para ser polida.

O polimento foi feito com a atuação do OP-S (suspensão de óxidos como tamanho de grão aproximadamente de 0,04nm) em combinação com detergente e um pouco de água destilada, e o polimento foi feito em uma politriz de prato rotativo que atua com velocidades de 300 e 600 rpm. Mesmo com a constante rotação da amostra através do pano de polimento foi inevitável a formação de cometas, devido a porosidade da amostra. Com a observação feita no microscópio óptico pode se conferir que as amostras estavam bem polidas e prontas para a análise em microscópio eletrônico.

Para a caracterização cristalográfica das fases presente, foi feito o pó de parte das amostras para a análise por difratometria de raios X (DRX). As amostras foram analisadas no difratômetro SHIMADZU, modelo XRD 6000, presente no departamento.

3 Resultados

As composições globais e das fases observadas nas diferentes amostras foram obtidas por EDS e são apresentadas na Tabela 2.

	Composição		_		Composição da	
Liga	global da liga		Fase	Coloração	região	
	%at Ni	%at Sn			% Ni	% Sn
NS10	88.803	11.197	Ni₃Sn	clara	76.700	23.300
			Ni	intermediária	88.223	11.777
			INISS	escura	91.075	8.925
NS23	74.622	25.378	Ni-Sp	clara	74.624	25.318
			1113011	intermediária	75.502	24.498
			Ni _{ss} (?)	escura	83.771	16.229
NS30	68.374	31.626	Ni₃Sn₂	clara	61.203	38.797
			Ni₃Sn	intermediária	72.881	27.119
				escura	72.515	27.485
NS40	55.542	44.458	Snss (?)	clara	3.260	96.740
			Ni₃Sn₄ (?)	intermediária	42.925	57.075
			Ni₃Sn₂_LT	escura	57.001	42.999
NS48	50.527	49.473	Sn _{SS} (?)	clara	83.771	16.229
			Ni ₃ Sn ₄ (?)	intermediária	42.007	57.993
			Ni ₃ Sn ₂ _LT	escura	56.687	43.313

Fonte: os autores

As fases seguidas de "(?)" na Tabela 2 representam fases não identificadas diretamente por DRX e cujas quantidades medidas pelo EDS a princípio correspondem ao esperado pelo diagrama de fases segundoZemanova[7]. Em relação às fases não identificadas, não foi possível ter uma resposta conclusiva por DRX devido às pequenas frações volumétricas presentes na microestrutura.

3.1 <u>NS10</u>

A amostra bruta de fusão NS10 tem nominalmente 10% atômico de Sn e segundo o observado no EDS sua composição global ficou em torno de 11% atômico de Sn.

Figura 1 - Micrografias da amostra NS10

É possível notar a presença de três regiões com colorações diferentes. A região de coloração mais clara corresponde à fase Ni₃Sn_LT, já que esta fase foi identificada no DRX (ver a Figura 3) e sua composição via EDS foi coerente com esta interpretação. No difratograma ainda foi possível identificar a fase Ni_{SS} pelas mesmas razões. Pela análise composicional, indicada na Tabela 2, verifica-se que a região mais escura na Figura 2 corresponde perfeitamente com o esperado para essa fase, enquanto a região intermediária possui mais estanho em sua composição, isto é, mais estanho dissolvido na fase Ni_{SS} de estrutura cúbica. Isto ocorre porque a fase Ni_{SS} tem uma considerável solubilidade de estanho, como pode ser observado pelo diagrama de fases do sistema (ver a Figura 1). Essa variação de concentração de estanho leva a uma esperada alteração no parâmetro de rede, ilustrada pela Figura 4, obtida usando os dados do presente trabalho combinados a informações da literatura [8-11].

Fonte: os autores

Fonte: os autores Figura 3 – Variação do parâmetro de rede da célula unitária da fase Niss com a porcentagem de estanho

Fonte: adaptado pelos autores [8-11]

3.2 <u>NS23</u>

A amostra bruta de fusão NS23 tem nominalmente 23% atômico de Sn e segundo o observado no EDS sua composição global ficou em torno de 25% atômico de Sn. Nota-se pelas micrografias da Figura 5 a presença de pequenas colônias eutéticas espalhadas pela amostra. Isso se deve ao fato da liga ter sido deslocada para a direita no diagrama, como pode ser visto na Figura 1, para o campo monofásico Ni₃Sn_LT, que é a única identificada pelo difratograma (ver a Figura 6). Apesar da grande fração volumétrica da fase Ni₃Sn_LT, ainda assim pode ser observada outra fase de coloração mais escura nessa amostra, em volume muito pequeno, provavelmente Niss presente em quantidade inferior à sensibilidade do difratômetro, que não se difundiu para formar a fase Ni₃Sn_LT.

Figura 4 - Micrografias da amostra NS23

Figura 5 – Difratograma da amostra NS23

Fonte: os autores

Há a presença de muitos poros nessa amostra, provavelmente frutos de diferentes coeficientes de expansão térmica das fases presentes, o que acarretou na formação de microrrechupes por toda a amostra durante a contração durante o resfriamento. Os poros presentes na amostra também dificultaram o polimento da amostra NS23, por isso não foi possível obter imagens sem interferências visuais, resultando assim na presença de muitos riscos na micrografia.

3.3 <u>NS30</u>

A amostra bruta de fusão NS30 tem nominalmente 30% atômico de Sn e segundo o observado no EDS sua composição global ficou em torno de 32% atômico de Sn. A liga NS30 se encontra numa região bifásica do diagrama Ni-Sn segundo Zemanova [7].

Figura 7 - Micrografias da amostra NS30.

Fonte: os autores

Como mostra a Figura 7, é possível notar a formação de uma estrutura típica hiper-eutética, com precipitados primários de Ni₃Sn₂, com morfologia mais equiaxial, crescendo a partir do líquido e solidificados a alta temperatura, seguida pela reação eutética, resultando numa solidificação interdentrítica lamelar. A matriz mais escura é a fase Ni₃Sn_LT por ser mais rica em níquel. Há a presença de muitos poros nessa amostra, oriundos da diferença de densidade entre o líquido e a fase sólida primária, o que levou à formação de pequenos rechupes por toda a amostra durante a sua contração ocorrida no resfriamento, como no caso da amostra anterior. Observa-se uma concentração de poros maiores na região rica em Ni₃Sn₂_LT, o que ocorreu devido ao aprisionamento de líquido, porém também há microrrechupes na região interdendrítica, pois esta foi a última a solidificar. A identificação das fases via DRX está indicada no difratograma da Figura 8.

Fonte: os autores

3.4 <u>NS40</u>

A amostra bruta de fusão NS40 tem nominalmente 40% atômico de Sn e segundo o observado no EDS sua composição global ficou em torno de 44% atômico de Sn.

Figura 9 - Micrografias da amostra NS40

EEL - USP

D8.9 x1.0k 100 um EEL - USP

H D8.9 x3.0k 30 um

Fonte: os autores

Ao contrário das amostras anteriores, a NS40 não apresenta uma microestrutura oriunda de uma transformação eutética e sim de uma reação peritética.

Inicialmente esperava-se obter uma liga no campo monofásico do diagrama, mas a concentração de estanho encontrada (ver a Tabela 2) indica que o lingote obtido se encontra num campo bifásico como pode ser observado na Figura 1. Como indica a Figura 9, é possível notar nessa amostra três regiões de coloração bem distinta que provavelmente correspondem a três fases diferentes.

Na amostra não foi identificada apenas a presença da fase Ni₃Sn₂_LT. A presença de outras fases não se dá em quantidade significativa para ser detectada pelo difratômetro de raios X, portanto a caracterização de todas as fases presentes nessa amostra não foi conclusiva. Contudo acredita-se que a fase mais clara se trate de estanho em solução sólida que provavelmente não obteve condições cinéticas favoráveis que permitissem que a reação peritética se completasse,o que acabou por resultar na formação dessa fase durante a solidificação. Em microscopia eletrônica de varredura (MEV) as fases com maior número atômico (Sn: 50; Ni 28) retroespalham mais elétrons e aparecem com a coloração mais clara nas imagens. Há ainda uma região de coloração intermediária que possivelmente é referente à fase Ni₃Sn₄, mais rica em estanho do que a Ni₃Sn₂_LT, e, portanto, mais clara nas

imagens. Salientamos que, segundo o diagrama de fases, é esperada a presença dessa fase na amostra, já que sua composição se encontra no campo bifásico entre as duas fases mencionadas.

3.5 NS48

A amostra bruta de fusão NS48 tem nominalmente 48% atômico de Sn e segundo o observado no EDS sua composição global ficou em torno de 49% atômico de Sn. A amostra NS48 se encontra na mesma região bifásica do diagrama Ni-Sn que a liga NS40 como se observa na Figura 1. Dado esse fato, esta aparenta conter as mesmas fases que aquela, incluindo Ni₃Sn₄ e a fase rica em estanho, porém a única identificada pelo difratograma foi a fase Ni₃Sn₂_LT.

x200 500 um D8.1

Fonte: os autores

Como não se pode identificar todas as fases presentes nas amostras dessa composição, não foi possível realizar uma análise conclusiva.

4 Conclusão

Foi possível obter as fases esperadas segundo o diagrama de fases binário Ni-Sn sem maiores surpresas.

Apenas nas amostras contendo 10%Sn e 23%Sn foi possível caracterizar todas as fases presentes, ao passo que nas demais apenas uma fase correspondeu à indexação dos picos enquanto a baixa fração volumétrica não permitiu a identificação nos equipamentos de difratometria de raios X nem uma medida confiável por EDS.

Os resultados apresentados neste trabalho, quando refinados, poderão servir como fonte de dados experimentais para trabalhos futuros de descrição termodinâmica desse sistema binário usando o protocolo CALPHAD (CALculation of PHAse Diagrams).

- 5 Referências Bibliográficas
- [1] CHEN, S. W.; WANG, C. H.; LIN, S.K.; CHIU, N. C., Phase Diagrams of Pb-Free Solders and their Related Materials Systems, J. C.N. Mater. Sci. Mater. Electron, v. 18, p.19–37, 2006.
- [2] KROUPA, A.; DINSDALE, A.; WATSON, A.T.; VRESTAL, J.; ZEMANOVA, A., COST531 project: Study of the advanced materials for lead free soldering, J. Min. Metall. Sect. B Metall, v. 43, p. 113–123, 2007.
- [3] ELMAHFOUDI, A.; FÜRTAUER, S.; SABBAR, A.; FLANDORFER, H., Enthalpy of mixing of liquid systems for lead free soldering: Ni-Sb-Sn system, Thermochim. Acta., n.4, p. 33–40, 2012.
- [4] KROUPA, A.; DINSDALE, A.; WATSON, A.T.; VRESTAL, J.; ZEMANOVA, A., The development of the COST 531 lead-free solders thermodynamic database, Jom., v. 59, p.20–25, 2007.
- [5] IPSER, H.; FLANDORFER, H.; LUEF, C.H.; SCHMETTERER, C.; SAEED, U.; Thermodynamics and phase diagrams of lead-free solder materials, Lead-Free Electron. Solder. A Spec. Issue J. Mater. Sci. Mater. Electron. p.3–17, 2007.
- [6] LIU, H.S.; WANG, J.; JIN, Z.P., Thermodynamic optimization of the Ni-Sn binary system, Calphad Computational Coupling Phase Diagrams Thermoc., v. 28, p.363–370, 2004.
- [7] ZEMANOVA, A.; KROUPA, A.; DINSDALE, A., Theoretical assessment of the Ni-Sn system, Monatshefte fur Chemie, v. 143, p. 1255–1261, 2012.
- [8] MISHIMA, Y.; OCHIAI, S.; SUZUKI, T., Lattice parameters of Ni(γ), Ni₃Al(γ ') and Ni₃Ga(γ ') solid solutions with additions of transition and b-subgroup elements, Acta Met., v. 33, p. 1161–1169, 1985.
- [9] PEARSON, W.B.; THOMPSOM, L.T., The lattice spacings of nickel solid solutions, Can. J. Phys., v.35, p.349-357, 1957.
- [10] NUDING, M.; ELLNER, M., Influence of the isotypical A9, A10 and B11 solvents on the partial atomic volume of tin, J. Alloys Compd., v. 252, p. 184-191, 1997.
- [11] FREBEL, M.; PREDEL, B. KLISA, U., Zur diskontinuierlichen

Ausscheidungsreaktion in Nickel-Zinn-Mischkristallen, I. Experimentelle Ergebnisse und Thermodynamik der feinlamellaren diskontinuierlichen Ausscheidungs-reaktion, Z. Met., 1974.

EXPERIMENTAL INVESTIGATION OF THE NI-Sn (NICKEL-TIN) BINARY SISTEM PHASE DIAGRAM

ABSTRACT

In this work were prepared samples with different compositions in the Ni-Sn binary system using an arc-melting furnace with non-consumable tungsten electrode under argon atmosphere. The as-cast alloys were characterized via Scanning Electron Microscopy (SEM) for microstructural analysis, along with Energy Dispersive X-Ray Spectroscopy (EDS) for compositional measurements of the phases present. The crystallographic identification of these phases was conducted using X-Ray Diffraction (XRD) analysis.

Key-words: Ni-Sn, Lead-free solders, Phase diagrams, Microstructural characterization