CARACTERIZAÇÃO MICROESTRUTURAL DE COMPÓSITOS À BASE DE COBALTITA DE LANTÂNIO E CÉRIA PARA APLICAÇÃO COMO CATODOS DE CÉLULAS A COMBUSTÍVEL

E. R. T. Rodrigues¹, R. M. Nascimento¹, A. C. de Miranda¹, D. A. Macedo², A. M. de Lima¹

¹Universidade Federal do Rio Grande do Norte – UFRN, ²Universidade Federal da Paraíba – UFPB

Av. Salgado Filho, 2860, Lagoa Nova 59075-900, Natal - RN, Brasil

erickssonrtr@gmail.com

RESUMO

Células a combustível são dispositivos que convertem energia química em elétrica via reações de oxiredução. Neste trabalho, a cobaltita de lantânio dopada com estrôncio e ferro (La_{0,6}Sr_{0,4}Co_{0,2}Fe_{0,8}O₃ – LSCF) um tradicional material de catodo de célula a combustível foi misturada a um material de eletrólito (compósito) à base de céria dopada com gadolínia e uma mistura eutética de carbonatos de lítio e sódio (CGO-NLC). Os pós de LSCF e CGO-NLC foram obtidos pelo método citrato e misturados para a obtenção de um catodo compósito. Amostras obtidas por prensagem uniaxial entre 5 e 10 MPa foram sinterizadas a 1100 °C e investigadas por difratometria de raios X, microscopia eletrônica de varredura e ensaio de microdureza. Uma célula simétrica catodo/eletrólito/catodo, obtida por co-prensagem e co-sinterização, foi investigada por microscopia eletrônica. Os resultados indicaram que o compósito é quimicamente estável até a temperatura de sinterização utilizada. A microdureza variou entre 51 e 227 HV.

Palavras-chave: Método citrato, LSCF, catodo compósito.

INTRODUÇÃO

Célula a combustível é um dispositivo que converte eletroquimicamente combustíveis químicos em eletricidade; é, essencialmente, uma bateria que não para de fornecer corrente elétrica por causa da contínua alimentação externa de combustível. Em outras palavras, é uma bateria na qual os dois eletrodos não são consumidos durante a descarga, mas agem simplesmente como locais para a reação entre combustível e oxidante (1). Células a combustível convertem energia química diretamente em energia elétrica com eficiência termodinâmica não limitada pelo ciclo de Carnot (2 e 3). Essa vantagem das células a combustível depende, entretanto, de como os combustíveis que serão utilizados podem ser reformados para produzir hidrogênio e dióxido de carbono (4). Toda célula a combustível é composta de uma sequência de unidades, cada uma com quatro componentes: o eletrólito, o eletrodo para o ar (ar é o oxidante), o eletrodo para o combustível (o mais comum é o hidrogênio), e o interconector. Muitos tipos de células a combustível foram desenvolvidos, sendo as células classificadas geralmente de acordo com o tipo de eletrólito (5).

O La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ} (LSCF) é um material com estrutura do tipo perovskita que vem sendo analisado como um excelente material para aplicação como catodo em células a combustível, devido a sua elevada condutividade mista (iônica e eletrônica) entre 600 e 800 °C. Este material deve apresentar uma distribuição granulométrica homogênea entra as partículas, boa compatibilidade química e térmica com os componentes, e que a microestrutura apresente uma boa porosidade controlada para permeação do gás oxidante. A importância de se estudar esses materiais é de grande relevância, pois as células a combustível são consideradas um dos mais promissores dispositivos geradores de energia elétrica, dentro de um mundo cada vez mais preocupado com a produção de energia e com mínimo impacto ambiental e à saúde humana (6 e 7). A Figura 1 apresenta o esquema de funcionamento da célula unitária de uma célula a combustível.

MATERIAIS E MÉTODOS

Primeiramente, analisou-se o quanto de massa era necessário sintetizar para que de acordo com esta pudesse estimar as massas necessárias de cada reagente para a realização da síntese de citrato. Para este cálculo foram utilizados: nitratos de Lantânio – La, Estrôncio – Sr, Cobalto – Co, Ferro – Fe, e o Ácido Cítrico – C₆H₈O₇.

Foram realizadas três sínteses do La_{0,6}Sr_{0,4}Co_{0,2}Fe_{0,8}O₃ (LSCF), sendo de 3, 5 e 5 gramas, respectivamente. Os valores das massas teóricas foram calculados, em seguida os reagentes foram pesados nas proporções estequiométrica requeridas dos nitratos de La, Sr, Co, Fe, e do ácido cítrico. Foram utilizados dois béqueres para cada síntese, sendo adicionado em cada um deles 100 mL de água destilada. Em seguida, foi acrescentado o ácido cítrico proporcionalmente em cada um deles, logo após, sendo feita a agitação magnética durante 3 minutos a 50 °C.

Após a completa dissolução foi adicionado em um béquer o nitrato de Fe e o de Sr, no outro béquer o nitrato de La, e logo após uma hora o nitrato de Co. Devido à adição dos reagentes, observou-se que há uma diminuição na temperatura, mesmo assim foi necessário aumentá-la para 70°C. É de suma importância que verifique-se a todo instante a temperatura para que não ocorra um aumento brusco e acabe criando precipitados na síntese. A síntese começa a criar precipitados a partir de temperatura de 80°C. Caso isso venha ocorrer à síntese deverá ser refeita. Contudo, após 1 hora da adição do Co, mistura-se as duas soluções, porém é necessário fazer varias misturas, de béquer em béquer, para assim obter-se uma boa mistura das soluções. Depois que todos os reagentes são misturados apenas em apenas um béquer a síntese ainda fica por 1 ou 2 horas em agitação magnética e aquecimento. Ao fim da síntese, a solução é levada para o forno tipo mufla para ser submetida à temperatura de 300 °C com um patamar de aquecimento de 1 °C.min⁻¹ durante 3 horas. Logo após, o material foi macerado e peneirado, sendo obtido o pó e em seguida levado novamente ao forno para ser calcinado a uma temperatura de 900 °C, com um patamar de aquecimento de 3 °C.min⁻¹ durante 4 horas. Por fim, obtendo o pó do LSCF.

Na Tabela I, mostra todos os reagentes utilizados na rota do citrato para a produção do LSCF.

Reagentes Utilizados	Marca	Pureza
Nitrato de Lantânio Hexahidratado	Panreac	99%
Nitrato de Cobalto Hexahidratado	Sigma Aldrich	98%
Nitrato de Estrôncio	Sigma Aldrich	99%
Nitrato de Ferro Nanohidratado	Sigma Aldrich	98%
Ácido Cítrico Anidrido	Synth	99,5%

Tabela I: Reagentes usados na rota do citrato.

Foi utilizada a difração de raios X neste trabalho para encontrar e confirmar a formação da fase cristalina de interesse que é a cobaltita de lantânio dopada com estrôncio e ferro (LSCF). É feita também a caracterização morfológica do pó para explorar suas partículas e das amostras obtidas via prensagem uniaxial para analisar como o material se comportou após compactação. A compactação do pó cerâmico foi feita através de uma prensa uniaxial com pressão de compactação de 2 toneladas (101,86 kgf/cm²) e sinterizada a 1100 °C por 3 horas com uma taxa de aquecimento de 3 °C.min⁻¹. Já para a mistura dos pós de LSCF e CGO-NLC foi feita através de uma prensa uniaxial com pressão de compactação de 50,93 kgf/cm² e sinterizadas a 690 °C por 30 minutos e com uma taxa de aquecimento de 2 °C.min⁻¹.

A célula simétrica foi obtida com a composição dos pós: LSCF (catodo) e CGO-NLC (eletrodo). Primeiramente, foi obtido o pó do eletrodo compósito que é produzido pela mistura entre os dois pós pelo almofariz de ágata. Depois foi compactado na prensa uniaxial camada por camada (eletrodo/eletrólito/eletrodo) dos pós. A pastilha foi sinterizada a 690 °C devido ao eletrólito, pois o mesmo é calcinado a 590 °C.

Para a microdureza Vickers, foi utilizado nas amostras de LSCF6428 e LSCF6428 + CGO-NLC uma carga de 100 gramas no microdurômetro, modelo HMV-2. Foram feitas três endentações em cada amostra e todas as endentações foram realizadas numa linha horizontal ao longo das pastilhas. As endentações só foram realizadas após o processo de sinterização das pastilhas.

RESULTADOS E DISCUSSÃO

Observou-se que o pó cerâmico não apresentou formação de fases secundárias nos três difratogramas, e também notou-se em sua grande maioria os determinados picos correspondentes ao material de interesse. Percebe-se que os picos de difração cristalina LSCF são bastante intensos para a temperatura de calcinação, 900 °C. Isso sugere um gradativo aumento na cristalinidade do pó cerâmico de LSCF.

A Figura 2 mostra os difratogramas de raios X do pó da composição La_{0,6}Sr_{0,4}Co_{0,2}Fe_{0,8}O₃ (LSCF), calcinados por 4h a 900 °C, obtido pela síntese de citrato.

Figura 2: Difratograma de raios X do pó cerâmico com composição La_{0,6}Sr_{0,4}Co_{0,2}Fe_{0,8}O₃ obtidos após calcinação de 900 °C por 4 horas, (1) primeira síntese – 3 gramas, (2) segunda síntese – 5 gramas, (3) terceira síntese – 5 gramas.

Caso houvesse uma diminuição na temperatura de calcinação de 900 °C para 800 °C ou 700 °C e na também na variação da composição isso iria contribuir para uma diminuição da quantidade da fase LSCF, e favoreceria a formação de fases secundárias, tais como a fase SrLaCoO₄ como na literatura, mas não foi o caso (9).

A caracterização morfológica realizada pelo microscópio eletrônico de varredura (MEV) das partículas no pó de LSCF calcinado a 900 °C apresenta diferentes tamanhos de partículas, de modo homogeneamente distribuído, é exposta na Figura 3.

Figura 3: Morfologia das partículas do pó cerâmico de LSCF calcinada a 900 °C com aumentos de (A) 100x e (B) 1000X.

Observou-se que nas micrografias do pó cerâmico de LSCF evidenciam uma considerada aglomeração do material, mas é notável que as partículas não possuam o mesmo tamanho de grão, assim aconselha-se que novas etapas de processamento cerâmico (maceração e moagem) sejam adotadas a fim de tonar o pó mais adequado para preparar a célula simétrica (catodo/eletrólito/catodo).

Na micrografia da pastilha de LSCF fraturada analisou-se que as partículas estavam bastante aglomeradas e que a compactação das partículas possuía certa aderência uma com as outras.

Foi feito a caracterização através do microscópio eletrônico de varredura da superfície de fratura da pastilha de LSCF6428 + CGO-NLC (eletrodo) para analisar se as partículas dos dois pós tinham realmente sido misturadas e como se comportavam. Com a fratura, observou-se uma boa compactação das partículas.

A Figura 4 mostra a morfologia da superfície do pó cerâmico de LSCF. Pode-se observar que as partículas do pó cerâmico foram bem compactadas e assim analisando a homogeneidade das partículas de LSCF.

Figura 4: Morfologia da superfície da pastilha (pó compactado) cerâmica de LSCF com aumentos de (A) 50x, (B) e (C) 1000x.

Na Figura 5, a seguir, mostra a superfície de fratura do pó cerâmico compactado.

Figura 5: Morfologia da superfície de fratura da pastilha (pó compactado) de LSCF com aumentos de (A) 30x, (B) 200x e (C) 1000x.

A Figura 6, abaixo, mostra a morfologia da mistura dos pós de LSCF e CGO-NLC compactados. A micrografia da mistura dos pós não aparenta ter obtido uma boa compactação, mas com Figura 7, analisamos que a superfície de fratura mostra que a pastilha obteve uma boa compactação, devido à forma que as partículas apresentaram na região de fratura desse material. Apresentando assim uma boa compactação entre os pós.

Figura 6: Morfologia da superfície da pastilha de LSCF + CGO-NLC com aumentos de (A), (B) e (C) 1000x.

Figura 7: Morfologia da superfície de fratura da pastilha de LSCF + CGO-NLC com aumentos de (A) 30x, (B) 40 x e (C) 1000x.

Na Figura 8, a seguir, mostra a célula simétrica fraturada evidenciando as suas camadas eletrodo/eletrólito/eletrodo.

Figura 8: Célula simétrica analisada evidenciando as 3 camadas (eletrodo/eletrólito/eletrodo).

Na Figura 9, mostra as camadas da célula simétrica com quantidades de, aproximadamente, 0,1, 0,3 e 0,1 (eletrodo/eletrólito/eletrodo) gramas, produzida pela mistura dos dois pós de LSCF e CGO-NLC no almofariz de ágata e compactados em uma prensa uniaxial com co-prensagem de 50,93 kgf/cm² e sinterizadas a 690 °C.

Figura 9: Morfologia da célula simétrica evidenciando suas camadas, eletrodo/eletrólito/eletrodo com aumento de 60x.

Na Figura 10 mostra uma análise pontual e evidencia em qual ponto do eletrólito foi feita a análise de EDS (Espectroscopia de Energia Dispersiva). A Figura 11 mostra o gráfico com as condições de aquisição do material, mostrando os picos dos elementos presentes na pastilha referente ao ponto destacado na Figura 10, destacando a intensidade do pico do estrôncio no eletrólito e a presença marcante de todos elementos no eletrodo compósito.

Figura 10: Morfologia da célula simétrica evidenciando os pontos em que foram feitas as análises de EDS no eletrólito e no eletrodo compósito.

Figura 11: Gráfico com os picos dos elementos presentes no ponto analisado, (A) referente ao eletrólito e (B) referente ao eletrodo compósito.

As duas pastilhas não apresentaram uma alta dureza, isso devido analise dos valores obtidos com o ensaio, e assim confirmados pelas tabelas apresentadas nos resultados. Contudo, mesmo analisando as pastilhas via microdureza, visualmente já era perceptível que o material possuía certa fragilidade. Na Figura 12, abaixo, mostra as endentações feitas na pastilha de LSCF + CGO-NLC (eletrodo). Na Tabela II, a seguir, mostra os valores obtidos pelo microdurômetro, evidenciando assim altas variações nas durezas da pastilha de LSCF + CGO/NLC.

Figura 12: Endentações feitas na pastilha de LSCF + CGO-NLC (eletrodo), realizadas (A) no meio, (B) e (C) nas boras da pastilha.

Local das Endentações	D1	D2	Média	Desvio Padrão (σ)	ΗV
Lado 1	40,75	43,06	41,905	1,633	51,03
Meio	18,50	21,88	20,19	2,390	227,5
Lado 2	35,06	36,81	35,935	1,237	71,79

Tabela II: valores obtidos das endentações realizadas na pastilha de LSCF + CGO-NLC (eletrodo).

CONCLUSÕES

A partir do trabalho desenvolvido, foi possível analisar que a síntese de citrato apresentou uma rota química favorável para a obtenção do pó de cobaltita de lantânio dopada com estrôncio e ferro (LSCF) com propriedades, características estruturais e morfológicas adequada para o processo de fabricação de eletrodos porosos e com um alto potencial para aplicação como catodos de células a combustível.

Foi possível concluir que nas análises de difração de raios X (DRX), não foram identificados à presença de fases secundárias no pó de LSCF. Já na microscopia eletrônica de varredura (MEV), analisou-se a porosidade dos materiais e se verificou a necessidade de aprimoramento da técnica de maceração e peneiramento do pó cerâmico de LSCF, apesar de não ter sido demonstrado precisamente, no entanto será investigado. Também foram evidenciados os mapeamentos do pó da célula simétrica, com destaque para a presença dos principais elementos. As imagens analisadas através do ensaio de microdureza não obtiveram uma alta dureza, mostrando certa fragilidade.

REFERÊNCIAS

- (1) ATKINSON, Alan et al. Advanced anodes for high-temperature fuel cells.**Nature materials**, v. 3, n. 1, p. 17-27, 2004.
- (2) MINH, Nguyen Q. Solid oxide fuel cell technology—features and applications. **Solid State Ionics**, v. 174, n. 1, p. 271-277, 2004.
- (3) KINOSHITA, K.; CAIRNS, E. J. Encyclopedia Chem. **Technol**, v. 11, p. 1098, 1994.
- (4) COORS, W. Grover. Protonic ceramic fuel cells for high-efficiency operation with methane. **Journal of Power Sources**, v. 118, n. 1, p. 150-156, 2003.

- (5) DE FLORIO, D. Z. et al. Materiais cerâmicos para células a combustível (Ceramic materials for fuel cells). **Cerâmica**, v. 50, p. 275-290, 2004.
- (6) VARGAS, R. A. et al. Síntese e caracterização de La1-XSrXMnO3±δ e La1-XSrXCo1-YFeYO3-δ utilizados como catodo em células a combustível de óxido sólido. Cerâmica, v. 54, p. 366-372, 2008.
- (7) LIU, Shiming; QIAN, Xiaoliang; XIAO, Jianzhong. Synthesis and characterization of La0. 8Sr0. 2Co0. 5Fe0. 5O3±δ nanopowders by microwave assisted sol–gel route. Journal of Sol-Gel Science and Technology, v. 44, n. 3, p. 187-193, 2007.
- (8) NASCIMENTO, A. C.; MOHALLEM, N. D. S. Materiais usados na constituição dos principais componentes de células a combustível de óxido sólido. Cerâmica, v. 55, p. 46-52, 2009.
- (9) ZHOU, Wei et al. LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells.**Journal of the American Ceramic Society**, v. 91, n. 4, p. 1155-1162, 2008.

MICROSTRUCTURAL CHARACTERIZATION OF COMPOSITE COBALTITE AND LANTHANUM-BASED CERIA FOR USE AS FUEL CELL CATHODES.

ABSTRACT

Fuel cells are devices that convert chemical energy into electricity via redox reactions. In this work, the lanthanum cobaltite doped with strontium and iron (La_{0,6}Sr_{0,4}Co_{0,2}Fe_{0,8}O₃ - LSCF) a traditional cathodes material of the fuel cell was mixed with an electrolyte material (composite) to the base ceria doped with gadolinia and a eutectic mixture of lithium carbonates and sodium (CGO-NLC). The powders of LSCF and CGO-NLC were obtained by the citrate method and mixed to obtain a composite cathode. Samples obtained by uniaxial pressure between 5 and 10 MPa were sintered at 1100°C and investigated by X-ray diffraction, scanning electron microscopy and micro hardness test. A symmetric cell cathode / electrolyte / cathode, obtained by co-pressing and co-sintering was investigated by electron microscopy. The results indicated that the composite is chemically stable up to the sintering temperature used. The hardness ranged between 51 and 227 HV.

Keywords: Citrate method, LSCF, composite cathode.