PRODUÇÃO ESCALONADA DE FILMES FLEXÍVEIS DE ALGINATO POR CASTING CONTÍNUO DE SOLUÇÃO

Gustavo D. Silva^{1*}, Leonardo do C. Braghim¹, Francys K. V. Moreira¹ e Luiz H. C. Mattoso²

1 - Departamento de Engenharia de Materiais (DEMa), Universidade Federal de São Carlos (UFSCar). Rodovia Washington Luís, km 235, São Carlos, CEP 13565-905, SP.

gustavo.dafonseca@estudante.ufscar.br

2-Pesquisador da Embrapa Instrumentação, São Carlos, SP.

RESUMO

O presente trabalho buscou desenvolver um método de produção de filmes flexíveis biodegradáveis de ALG em escala pré-piloto por casting contínuo de solução. Soluções aquosas de ALG com concentração de 1 a 10 % (base massa de água) foram preparadas e o casting contínuo foi realizado em uma máquina com duas estufas em série operando a 80 °C e velocidade de 13 cm min⁻¹. Foram comparadas soluções de ALG sem e com os plastificantes glicerol e sorbitol nas concentrações de 15 e 30 % (base massa de ALG). Os filmes foram caracterizados quanto às propriedades mecânicas por testes de tração e quanto à microestrutura. Foi observada excelente processabilidade das soluções de ALG com concentração mínima de 7 % sendo obtida uma produtividade de 0,03 m² filme/min, a qual foi no mínimo 1000 vezes maior do que aquelas tipicamente obtidas por casting em batelada. Os espectros de ATR-FTIR foram similares, indicando que o ALG e o plastificante foram misturados fisicamente, sem reagir durante o processamento, independente da composição. O glicerol se apresentou mais eficiente como plastificante em relação ao sorbitol para os filmes produzidos através dessa técnica. Dessa forma, este trabalho mostra que o casting contínuo pode ser empregado na produção de filmes biodegradáveis de ALG com ampla faixa de propriedades mecânicas para várias aplicações.

Palavras-chave: Embalagem biodegradável, rota úmida, propriedades mecânicas.

INTRODUÇÃO

A utilização crescente de filmes poliméricos não biodegradáveis em vários setores vem causando preocupações ambientais. Com isso, a busca por matéria-prima abundante e renovável, para produção de filmes poliméricos menos agressivos à natureza, tem se tornado cada vez mais relevante. O alginato (ALG) é um polissacarídeo biocompatível, atóxico e abundante que pode ser aplicado como embalagem, revestimentos comestíveis para alimentos e na produção de curativos regenerativos, sendo sua principal aplicação na forma de sal⁽¹⁾; ele é derivado do ácido algínico, encontrado na natureza, extraído principalmente de algas marinhas marrons pertencentes a classe *Phaeophyceae*.

A produção de filmes de alginato ocorre geralmente por casting em batelada, no entanto, tal método de processamento apresentou baixa produtividade, tornando-o economicamente inviável. Desta maneira, buscando solucionar o problema de produtividade, o presente trabalho

estudou a influência do *casting* contínuo na produtividade de uma produção pré-piloto de ALG. Na literatura existem diferentes formas de adequar as propriedades físicas dos filmes de ALG a depender da aplicação, dentre elas destaca-se a utilização de plastificantes. Vale ressaltar que a adição de plastificantes leva a uma diminuição das forças intermoleculares e ao aumento da mobilidade das cadeias do polímero, melhorando a flexibilidade e manuseabilidade dos filmes (2,3).

Foram produzidas amostras com a concentração de 1 a 10% de ALG, com e sem a adição do plastificantes sorbitol e glicerol nas concentrações (0, 15% e 30% em massa de ALG). Os filmes foram então caracterizados química e mecanicamente, sendo comparados segundos suas propriedades e produtividade. Além disso, foi realizada uma comparação entre os filmes produzidos por casting contínuo e casting de bancada, averiguando a eficiência do método de processamento proposto por este trabalho.

MATERIAIS E MÉTODOS

Preparação das soluções de alginato

As soluções de alginato de sódio foram preparadas dissolvendo o polissacarídeo em pó na água à 25°C sob agitação mecânica por 30 min. Para as soluções que sofreram o casting contínuo, variou-se a concentração de alginato até 10% em massa para atingir a viscosidade adequada para processamento contínuo, que se mostrou ótima a 7%. O teor de plastificante (glicerol ou sorbitol) foi variado entre 15% e 30% em peso com base na massa de alginato, onde todas as soluções foram centrifugadas a 10.000 rpm por 5 min. Para questões de comparação e controle, preparou-se soluções puras de alginato, sem a presença de plastificantes.

Produção dos filmes de ALG por casting

Para o casting contínuo (CC), as soluções de ALG foram processadas em uma máquina de laminação KTF-B (Mathis, Suiça). As soluções foram continuamente vazadas em dispositivo de laminação, onde regulou-se a espessura da lâmina úmida formada em 1,3 mm no substrato. Após a altura ser definida, o substrato é levado por uma esteira a 13 cm/min até duas estufas em série, onde a água da solução é evaporada, restando apenas o filme de alginato seco. Para a obtenção dos filmes de 7% de alginato com 0%, 15% e 30% dos plastificantes glicerol (G) e sorbitol (S), utilizou-se as estufas em temperaturas diferentes, sendo elas 80 e 100°C, respectivamente. Ao fim do processo, todo filme obtido foi enrolado juntamente com o substrato. Para o casting de bancada (B), soluções de alginato a 1% foram vertidas em placas de petri e submetidas à secagem em estufa a 35°C por 24 h.

Espectroscopia ATR-FTIR

As medições de FTIR foram realizadas em um espectrômetro Brucker no modo de refletância total atenuada (ATR), onde os espectros foram registrados com acumulação espectral de 32 e resolução de 2 cm⁻¹.

Ensaios de tração

Realizou-se testes de tração uniaxial em uma máquina de teste universal equipada com uma célula de carga de 500N, onde foram realizadas conforme a norma ASTM D882⁽⁴⁾ utilizando no mínimo 5 corpos de prova, velocidade da cruzeta de 12,5 mm min⁻¹ e separação inicial entre as garras de 100 mm. O módulo de Young (E), resistência à tração (σ_T) e alongamento na

ruptura (ϵ_B) foram calculados a partir das curvas de tensão (σ) - deformação (ϵ) . A espessura média do filme foi determinada a partir de três medidas em cada espécime usando um micrômetro digital. Todos os espécimes foram pré-condicionados a 54 \pm 3% RH por 48 horas antes do teste.

RESULTADOS E DISCUSSÃO

Foi observada excelente processabilidade das soluções de ALG com concentração mínima de 7 % sendo obtida uma produtividade de 0,03 m² filme/min, a qual foi no mínimo 1000 vezes maior do que aquelas tipicamente obtidas por casting em batelada. As caracterizações por DRX (resultados não mostrados) indicaram sistemas amorfos, independentemente. Os espectros ATR-FTIR dos filmes são representados na Figura 1 para as amostras contendo os plastificantes na maior concentração avaliada neste trabalho (30%).

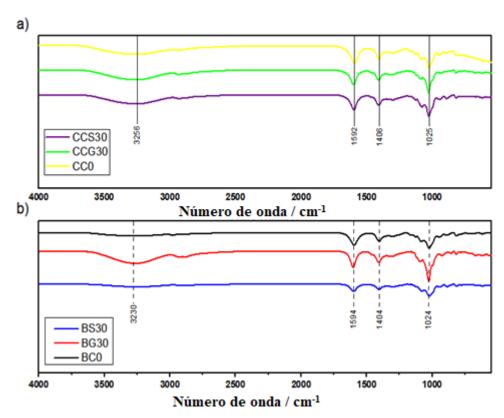


Figura 1: ATR-FTIR dos filmes de alginato produzidos puro e com 30% de plastificantes glicerol (G) e sorbitol (S). a) dos filmes obtidos pelo casting contínuo (CC); b) dos filmes obtidos pelo casting de batelada (B).

Observa-se a partir dos espectros que houve apenas mistura física entre os componentes dos filmes não havendo mudanças nas bandas vibracionais típicas da pectina, independentemente do tipo de plastificante e do processamento adotado. Os resultados dos ensaios de tração são listados na Tabela 1 para os filmes produzidos por casting contínuo de solução.

Tabela 1: Valores médios de módulo elástico (E), resistência tração (σ_T) e alongamento na ruptura (ϵ_B) nos filmes de alginato de sódio.

Filme (% Plastificante)	E (GPa)	σ _T (MPa)	ε _B (%)
ALG_PURO	3.4 ± 0.3^{a}	48.6 ± 3.6^{a}	3.4 ± 1.5^{a}
ALG_GOH15	1.2 ± 0.2 ^b	19.7 ± 1.4 ^b	4.2 ± 2.2^{a}
ALG_GOH30	0.2 ± 0.1°	5.1 ± 1.7°	12.1 ± 6.4°
ALG_SOH15	1.7 ± 0.2^{d}	30.5 ± 3.0^{d}	4.7 ± 1.3^{a}
ALG_SOH30	0.6 ± 0.07^{e}	16.3 ± 1.5°	$7.8 \pm 1.2^{\circ}$

A adição de sorbitol a 15 % diminuiu a resistência a tração (σ_T) e o módulo elástico (E) do filme de ALG de 48 MPa e 3,4 GPa para 30 MPa e 1,7 GPa, respectivamente, enquanto o alongamento na ruptura (ϵ_B) foi ligeiramente aumentado, de 3,4 % para 4,7 %. Para 30 % de sorbitol, as propriedades mecânicas foram σ_T = 16 MPa, E = 0,6 GPa e ϵ_B = 8 %. Já a adição de glicerol em 15 e 30 % alterou as propriedades mecânicas dos para E = 1,2 GPa e 0,2 GPa, σ_T = 20 MPa e 5 MPa e ϵ_B = 4,2 % e 12,1 %. Percebe-se que o aumento da plasticidade dos filmes de alginato só foi significativo para teores de plastificante de 30 %, resultando no maior alongamento de ruptura. O glicerol se apresentou mais eficiente como plastificante em relação ao sorbitol para os filmes produzidos de forma escalonada.

CONCLUSÕES

No geral, o *casting* contínuo mostrou-se eficiente para produção de filmes plastificados de alginato com produtividade de 0,03m² de filme por minuto, sendo esse rendimento mil vezes maior do que o obtido por casting de batelada.

O glicerol quando adicionado em concentração de 30% resultou-se no filme com maior alongamento na ruptura dentre as amostras produzidas, sendo mais eficiente como plastificante do que o sorbitol. Em termos de resistência mecânica, os níveis de plastificação permitem obter filmes similares ao PP ($\sigma_T > 30$ MPa), PEBD ($\sigma_T \sim 10$ MPa) e PVC plastificado ($\sigma_T \sim 5$ MPa). Logo, o casting contínuo mostrou-se eficaz para a produção de filmes biodegradáveis de alginato com ampla faixa de propriedades mecânicas para várias aplicações.

REFERÊNCIAS

- 1. MANCINI, M.; MORESI, M.; SAPPINO, F. Rheological behavior of aqueous dispersions of algal sodium alginates. Journal of food Engineering, v. 28, p. 283-295, 1996.
- 2. BANKER, G. S. Film coating theory and practice. Journal of Pharmaceutical Science, v.55, n.1, p.81-89, 1966.
- 3. JANGCHUD, A. e CHINNAN, M. S. Properties of peanut protein film: sorption isotherm and plasticizer effect. Lebensm. Wiss. U. Technolo, v.32, p. 89-94, 1999.
- 4. ASTM D 882-18. Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International. www.Astm.Org, p. 1–12, 2018.

STAGGERED PRODUCTION OF FLEXIBLE ALGINATE FILMS BY CONTINUOUS SOLUTION CASTING

ABSTRACT

The present work was aimed at developing a scaled-up method for producing flexible biodegradable ALG films by continuous solution casting. Aqueous solutions of ALG with a concentration from 1 to 10% (water mass basis) were prepared and continuous casting was performed on a machine running at 13 cm min⁻¹ with two ovens in series operating at 80 °C. ALG solutions were compared with and without the plasticizers glycerol and sorbitol at concentrations of 15 and 30% (ALG mass basis). The films were characterized for mechanical properties by tensile tests and FTIR. Excellent processability of ALG solutions was observed with a minimum concentration of 7%, obtaining a productivity of 0.03 m² film/min, which was at least 1000 times greater than those typically obtained by batch casting. The ATR-FTIR spectra were similar, indicating that ALG and plasticizers were physically mixed, without reacting during processing, regardless of the composition. Glycerol was more efficient as a plasticizer than sorbitol for the films. Thus, this work shows that continuous casting can be used in the production of biodegradable ALG films with a wide range of mechanical properties for various applications.

Keywords: *Biodegradable packaging, wet route, mechanical properties.*