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ABSTRACT 

 

Break temperature (Tbr) is one of the most important parameters in slag, considered one of its 

critical factors, indicating the beginning of the loss of its fluidity. A literature database was 

built to establish a relationship between the chemical composition of the slag and the prediction 
of its Tbr, both experimentally measured, through mathematical modeling by linear regression 

with L1 regularization (or Lasso). The resulting model, called L1 Model, resulted in lower 

deviation maximum error, mean and variance in relation to the Tbr values of the database. 

Sensitivity analysis was performed to present the correlations between chemical composition 

and Tbr. 
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INTRODUCTION 

 

Slags applied on continuous casting processes have some essential characteristics, such as 

viscosity at a temperature of 1300°C, percentage of solid crystallized layer inherent to the mold 
and break temperature (Tbr), the latter considered as the third critical parameter for these slags(1). 

The Tbr can be defined as the point where there is a significant increase in viscosity in which 

the slag shows a non-Newtonian behavior in a cooling, measured experimentally in viscosity 

measurements(2). 

Considered as an indicator reference where the slag begins to lose fluidity(3), the Tbr can be 

mathematically modeled by linear regression methods(4). 

The purpose of this work is to model mathematically the Tbr through the linear regression 

method with feature selection through a literature database. 

 

MATERIALS AND METHODS 

 

A literature database(5-11) was used, consisting of 54 different chemical composition data with 
their Tbr experimentally measured. Thus, the predicted variable Tbr (K) was mathematically 

modeled by linear regression with regularization L1(12) method  (or Lasso) (Equation (A)) with 

feature selection using the chemical composition (%mass) composed by chemical system CaO-

SiO2-Al2O3-MgO-Na2O-Li2O-B2O3-MnO-TiO2-FeO-K2O-Cr2O3-CaF2 considered the 

predictor variables. 



 

The values resulting from the applied mathematical modeling were compared with equations 

Steady State Condition Model and Dynamic Condition Model(4) through statistical evaluations 

of maximum error and the first and second central moments(13) (mean and variance, 

respectively) of the deviations, considered as the differences between the predicted values, 
resulting from linear regression and literature equations, and the database values. Subsequently, 

a sensitivity analysis was performed on the results of the mathematical modeling as a function 

of the relationship between chemical composition and Tbr. 

 

minimize ||Ax-y||22 + Σ a||x||1 (A) 

 

(A is the vector of the constants related to each chemical species of the chemical system of the 

database (dimensionless), x the vector of the chemical species of the chemical composition 

(%mass), y the values of Tbr (K) and a the regularization parameter L1 (dimensionless)) 

 
RESULTS AND DISCUSSION 

 

The parameter a that presented the smallest deviations obtained the value of 2. The linear 

model, named L1 Model, can be seen in Equation (B). 

 

Tbr (K) = 413.9 + 12.08%CaO + 0.05%SiO2 – 16.80%MgO + 13.11%Na2O + 1.2%Li2O – 

15.22%B2O3 – 11.90%TiO2 + 27.87%FeO – 2.48%CaF2 (B) 

 

The graph relating the values predicted by the L1 Model, Steady State Condition Model and 

Dynamic Condition Model(4) can be seen in Figure 1. 

 

Figure 1: Predicted values of L1 Model, Steady State Condition Model and Dynamic Condition 
Model(4). 

 

The deviation maximum error, mean and variance results can be seen in Table 1. The L1 Model 

resulted in a lower maximum deviation, mean and variance, in relation to the Steady State 

Condition Model and Dynamic Condition Model(4) equations. 

CaO, SiO2, Na2O, Li2O and FeO are chemical species that increase Tbr and MgO, B2O3, TiO2 

and CaF2 are chemical species that decrease Tbr in L1 Model. The presentation of null values 

for the constants related to the chemical species Al2O3, MnO, K2O and Cr2O3 correspond to the 

feature selection and present null sensitivity in relation to Tbr. That is, any variation between 



 
 

the chemical species Al2O3, MnO, K2O and Cr2O3 does not correspond to a variation in Tbr in 

linear regression with L1 regularization method. 

 
Table 1: Statistical Evaluation of deviations in L1 Model, Steady State Condition Model and Dynamic 

Condition Model(4). 

Statistical Evaluation 
Deviation Max. Error 

(°C) 

Deviation Mean 

(°C) 

Deviation Variance 

(°C2) 

L1 Model 79.89 26.44 360.01 

Steady State Condition 

Model 
442.73 163.47 7138.04 

Dynamic Condition Model 340.61 98.26 5143.70 

 

CONCLUSIONS 

 

• A literature database was used to perform linear regression by L1 regularization to relate the 

chemical composition variables (%mass) composed by the chemical system CaO-SiO2-Al2O3-

MgO-Na2O-Li2O-B2O3-MnO-TiO2-FeO-K2O-Cr2O3-CaF2 with break temperature (Tbr) (K), 

obtaining the mathematical model L1 Model. 

• The L1 Model obtained the lowest deviation maximum error, mean and variance in relation 

to the other 2 equations in the literature. 

• CaO, SiO2, Na2O, Li2O and FeO increase Tbr, MgO, B2O3, TiO2 and CaF2 decrease Tbr and 

Al2O3, MnO, K2O and Cr2O3 present null sensitivity in relation to Tbr in L1 Model. 
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